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Abstract
Introduction: Endodontic chelators may extrude to
apical tissues during instrumentation activating cellular
events on periapical tissues. This study assessed in
vitro the expression of nitric oxide (NO) concentrations
by murine peritoneal macrophages after contact with
MTAD (Dentsply/Tulsa, Tulsa, OK), Tetraclean (Ogna
Laboratori Farmaceutici, Muggio, Italy), Smear Clear
(Sybron Endo, Orange, CA), and EDTA (Biodinâmica,
Ibiporã, PR, Brazil). Methods: Macrophage cells were
obtained from Swiss mice after peritoneal lavage. Chela-
tors were diluted in distilled water obtaining 12 concen-
trations, and MTT assay identified the concentrations,
per group, displaying the highest cell viability (analysis
of variance, p < 0.01). Selected concentrations were
tested for NO expression using Griess reaction. Culture
medium and lipopolysaccharide (LPS) were used as
controls. Results: Analysis of variance and Tukey tests
showed that all chelators displayed elevated NO
concentrations compared with the negative control (p
< 0.01). MTAD induced the lowest NO expression,
followed by Tetraclean, EDTA, and Smear Clear. No
difference was observed between MTAD and Tetraclean
(p > 0.01), Tetraclean and EDTA (p > 0.01), and EDTA
and Smear Clear (p > 0.01). LPS ranked similar to
both EDTA and Smear Clear (p > 0.01). Conclusion:
The tested endodontic chelators displayed severe proin-
flammatory effects on murine-cultured macrophages.
Citric acid–based solutions induce lower NO release
than EDTA-based irrigants. (J Endod 2009;35:824–828)
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In endodontics, instrumentation and irrigation intend to achieve root canal enlarge-
ment and disinfection. However, independently of the foraminal diameter (1), depth

of irrigation needle penetration (2), or instrumentation technique used (3, 4), extru-
sion of debris and irrigants occurs, which may result in periapical inflammation and
postoperative flare-ups (5).

Once extruded, endodontic irrigants could permeate into tissue and initiate
cellular mechanisms including vascular alterations, activation of inflammatory cells,
expression of chemical mediators, and reduction in cellular repair (6, 7). Besides,
extruded debris and endodontic irrigants activate host defense in an attempt to elimi-
nate the irritant (7).

Macrophages play a role in host defense mechanisms as they release reactive
oxygen/nitrogen species such as nitric oxide (NO) and proinflammatory cytokines
essential in intercellular communication (8). The proinflammatory role of NO in the
development and maintenance of periapical lesions (8–12) through various biochem-
ical mechanisms such as the promotion of osteoblast and macrophages apoptosis (8,
11) and the differentiation of osteoclasts (12) has been well reported. Additionally, the
activation of NO synthase (NOS) positively correlates with prostaglandin E2 generation,
an inflammatory mediator resultant from cyclooxygenase conversion of arachidonic
acid. Both NO and prostaglandin E2 are capable of interacting with their own respective
biosynthetic pathways retromodulating NOS and cyclooxygenase (13).

NOS can be trigged upon stimulation by virulence factors present in microorgan-
isms, such as bacterial lipopolysaccharide (LPS) from gram negative (14) and lipotei-
choic acid from gram positive (15) as well as by other inflammatory cytokines (14).
Hence, if endodontic irrigants could also stimulate macrophage-induced NO expression
in vitro, its determination would help to indicate the in vivo risk of a proinflammatory
effect in case of apical extrusion.

During root canal instrumentation, chelating agents, such as EDTA, are widely
used to remove inorganic debris and to facilitate root canal disinfection (16). The effect
of EDTA on macrophage activity (17, 18) and viability (19) has been reported.
However, it remains unknown whether EDTA and other currently used chelators induce
the expression of NO by cultured macrophages.

Based on the essential role of macrophages in biochemical reactions in which
cellular products are released, this study intend to determine in vitro the effect of
MTAD (Dentsply/Tulsa, Tulsa, OK), Tetraclean (Ogna Laboratori Farmaceutici, Muggio,
Italy), Smear Clear (Sybron Endo, Orange, CA), and EDTA (Biodinâmica, Ibiporã, PR,
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TABLE 1. Endodontic Chelators, Their Compositions, and Manufactures

Chelator Composition Manufacturer

MTAD 3% Doxycycline hyclate Dentsply/Tulsa, Tulsa, OK
4.25% Citric Acid
0.5% Tween 80

Tetraclean 1% Doxycycline hyclate Ogna Laboratori Farmaceutici, Muggio, Italy
10% Citric Acid
2% Cetrimide
Polypropylene Glycol

SmearClear 17% ethylenediaminetetraacetic acid Sybron Endo, Orange, CA
Cetrimide
Polyoxyethylene
(10)iso-octylcyclohexyl ether
Water

EDTA 17% ethylenediaminetetraacetic acid Biodinâmia, lbiporã, PR, Brazil
Brazil) on NO concentrations released by murine peritoneal macro-
phages. The null hypothesis tested is that none of the chelators induce
proinflammatory effects on murine peritoneal macrophages.

Materials and Methods
Experimental Design

This laboratory-based study quantified NO concentrations ex-
pressed by cultured murine peritoneal macrophages after contact
with MTAD, Tetraclean, Smear Clear, and EDTA (Table 1). Twelve
subsequent dilutions of endodontic chelators were first evaluated for
cell viability using the MTT-tetrazolium method (3-[4,5-dimethylthia-
zol-2-yl]-2,5 diphenyl tetrazolium bromide). The dilutions displaying
significantly higher levels of cell viability on the MTT test were selected
for NO evaluation after an enzymatic reaction. All measurements for
MTT and NO tests were performed in triplicate. The NO results of the
selected different concentrations of the same solution were grouped
and a mean obtained for statistical analysis.

Materials
Each chelating solution was diluted in distilled water to obtain 12

different concentrations ranging from 1.9 mg/mL to 3,900 mg/mL.

Peritoneal Macrophages
Three Swiss mice, 6- to 8-weeks old, weighing 18 to 25 g, provided

by the Animal House of the Faculty of Pharmaceutical Sciences of Ara-
raquara, São Paulo, Brazil, were used to provide macrophages. Resi-
dent and thioglycollate-elicited peritoneal exudate cells were obtained
after an intraperitoneal injection of 3 mL of thioglycollate medium (3
g/100mL) and lavage of the peritoneal cavity with 5 mL of 10 mmol/L
of phosphate-buffered saline (pH = 7.2) 3 to 4 days later. The number
of macrophages in the peritoneal exudate was determined by cell stain-
ing using May-Grünwald-Giemsa stain (Sigma-Aldrich, São Paulo, SP,
Brazil). Cell preparations contained more than 95% macrophages.
The cells were washed twice with PBS and resuspended in the appro-
priate medium for each test.

Macrophages (2� 106 cells/mL) were suspended in RPMI-1640
containing 5% heat-inactivated fetal bovine serum, 100 IU/mL of peni-
cillin, 10 mg/mL of streptomycin, and 50 mmol/L of 2-mercapto-
ethanol. One hundred microliters of the suspension was added to
each well of a 96-well tissue culture plate, and the cells were incubated
at 37�C in a moist environment containing 5% CO2. After 24 hours, the
adhering cells were exposed to the 12 different concentrations of tested
solutions. Escherichia coli’s LPS and culture medium were used as
controls, positive and negative, respectively.
JOE — Volume 35, Number 6, June 2009
Cytotoxicity Assay (MTT Test)
The MTT assay (20) was performed to identify the concentrations

reaching the highest cell viability. Because NO expression is influenced
by cell mortality, a solution concentration leading to significant low
amount of viable cells should be not included on the NO assay. MTT
assay reflects cellular process in mitochondrial metabolism. After 24
hours of cell growth in both controls and experimental solutions diluted
in culture medium, the medium was replaced with 10 mL/well of 5 mg/
mL of MTT solution (Sigma-Aldrich) in fresh medium and reincubated
for 3 hours. Then, the cultures were removed from the incubator and
the resulting formazan crystals dissolved by adding 100 mL of MTT sol-
ubilizer solution. The absorbance was measured in a spectrophotom-
eter at 540-nm wavelength (Labsystems Mulstiscan Ascent, Thermo
Labsystems, Finland). Background absorbance was measured at 620
nm and subtracted from the 540-nm measurement. Tests were per-
formed in triplicate for each solution concentration.

Percentages of cell viability were calculated comparing the absor-
bance values with the absorbance of the negative control (100%). The
percentage values for each solution dilution as well as for control groups
were compared by using one-way analysis of variance. Concentrations
grouped as highest percentages of viable cells were selected for the
NO assay (Fig. 1). Differences were considered significant at p < 0.01.

NO Assay
The chosen concentrations (Fig. 1) were checked for NO synthesis

by the quantification of nitrite (NO2
�), a stable metabolite of NO, using

the Griess reaction (21). After 24 hours of incubation of macrophages
with the different concentrations, 50-mL aliquots of culture supernatant
were mixed with 50 mL of Griess reagent (1% w/v sulfanilamide, 0.1%
w/v naphthyl ethylenediamine, and 3% phosphoric acid) (Sigma-
Aldrich) and incubated for 5 minutes at room temperature. A spectro-
photometer at 540 nm recorded the absorbance. The NO2

� concentra-
tion (mmol/L) was calculated from a calibration curve generated with
NaNO2. For each solution concentration, the experiment was performed
in triplicate. All manipulations were performed under a laminar flow
hood to avoid contamination from outside organisms.

Statistical Analysis
Because the data from NO assay did not reach a normal distribu-

tion (Kolmogorov-Smirnov test) and the sample size was too low for
a nonparametric test, data were transformed using the log10 function
(GraphPad Prism 5.0, GraphPad Software, Inc., San Diego, CA). One-
way analysis of variance and Tukey post hoc tests verified differences
in NO expression among endodontic irrigants. The results from LPS
and culture medium were included in statistical analysis to verify
Endodontic Chelators Induce NO Expression by Murine-cultured Macrophages 825
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Figure 1. Cell viability observed on the MTT test. Claves indicate the solution concentration displaying similar and highest cell viability (analysis of variance,
p < 0.01). Those concentrations were selected for NO assay.
similarities on NO concentrations between experimental and control
groups. Differences were considered significant at a p < 0.01.

Results
On the MTT assay, one-way analysis of variance showed that 29

solution concentrations (dilutions) (8 from MTAD [1.9 mg/mL-240
mg/mL], 4 from Tetraclean [1.9 mg/mL-15 mg/mL], 7 from Smear Clear
[1.9 mg/mL-120 mg/mL] and 10 from EDTA [1.9 mg/mL-975 mg/mL]),
826 Pappen et al.
and the two controls were not significantly different (p > 0.01), display-
ing the highest means of cell viability (ranging from 90.03% to 100%).
Those solutions were, therefore, selected for the NO assay (Fig. 1).

Data from NO quantification are expressed in Figure 2. All chela-
tors presented a significantly higher NO release compared with the
negative control (p < 0.01). A significant difference among chelators
was observed (p < 0.01). MTAD displayed the lowest mean NO concen-
tration (79.7 mmol/L) followed by Tetraclean (79.8 mmol/L), EDTA
JOE — Volume 35, Number 6, June 2009
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(83.8 mmol/L), and Smear Clear (88.0 mmol/L). MTAD presented
significantly lower NO release compared with EDTA and Smear Clear
(p < 0.01) and Tetraclean significantly lower than Smear Clear
(p <0.01). EDTA and Smear Clear displayed similar NO concentrations
compared with LPS (p > 0.01), whereas MTAD and Tetraclean did not
(p < 0.01).

Discussion
Macrophage-induced NO is capable of eliciting a series of proin-

flammatory events on local environment (22). Increased NO produc-
tion by macrophages contribute to pathogenic mechanisms of
periapical periodontitis (8, 10, 11) through the induction of osteoblasts
and macrophage apoptosis (8), the differentiation of osteoclasts (12),
MMP-1 production by osteoclasts (11), and cytokine gene expression
(23) resulting in cytotoxic effects on both microorganisms and host
cells. When present in periapical granulomas, NO interacts with the
receptor for advanced glycation end products (RAGE), a multiligand
member of immunoglobulin superfamily of cell surface molecules,
resulting in modulation of tissue injuries and bone destruction (24).
In fact, elevated NO concentrations are usually observed in exudates
from human periapical lesions (11, 25). Hence, NO expression is an
important marker of periapical inflammation.

To prevent that NO concentrations could be the result of different
degrees of cell mortality induced by chelators, a complete standardiza-
tion was performed in the present study. First, chelators were subse-
quently diluted in an attempt to reduce solutions potential to kill
cells. Furthermore, the 12 dilutions per solution were subjected to
a cell viability assay (MTT test) to verify concentrations displaying
comparable highest cell viability. Although there was a 10% variation
in cell viability among selected dilutions, the statistical procedure for
MTT test indicated no difference in cell viability among them. This guar-
anteed that concentrations selected for NO evaluation allowed similar
cell death and that solution concentrations resulting in significantly
lower cell viability were not included for NO assay. Because different
chelators lead to different levels of cytotoxicity (26), multiple dilutions
among the groups were used for the NO assay (Fig. 1). Following this
approach, a higher reliability for NO assay was accomplished because
the NO concentrations recorded were not influenced by cell mortality.
Considering that cultured cells are more susceptible to drug toxic effects
than the periapical tissue (26) because in the body, phagocytic cells,
lymph, and blood channels help to dilute and carry away the drug
(27), the dilutions and MTT assay performed in this study helped to

Figure 2. Representation of NO concentrations expressed by viable cells after
contact with different concentrations of endodontic irrigants, negative and
positive (LPS) control. Claves indicate groups with statistically similar results
at a p < 0.01 (one-way analysis of variance and Tukey test).
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mimic the in vivo situation in which solutions would induce the release
of proinflammatory species rather than the cell death.

All endodontic chelators tested displayed an elevated proinflam-
matory effect because NO levels were significantly higher than those
observed in the negative control group (Fig. 2). This way, the null
hypothesis that none of the endodontic chelators induces proinflamma-
tory effects on cultured macrophages should be rejected. This clearly
indicates that the extrusion of chelators to periapical tissues would
induce significant NO production by macrophages. Nonetheless, statis-
tical differences among solutions were observed. Citric acid–containing
solutions (MTAD and Tetraclean, Table 1) presented significantly lower
levels of NO release compared with EDTA-based solutions (EDTA and
Smear Clear, Table 1) (Fig. 2).

The EDTA and citric acid–negative effects on macrophage viability
have been previously reported (19). Although cytotoxic, citric acid has
been ranked as less irritating than EDTA on cell cultures (19, 26).
Zhang et al (28) observed MTAD lower cytotoxicity compared with
EDTA on L929 fibroblast cultured cells. The less irritating to the cell
is the chemical the lower proinflammatory effect it might display.
This assumption is supported by the results of the present study in which
the citric acid–containing solutions displayed significantly lower NO
concentrations compared with EDTA-based solutions (Fig. 2). Addi-
tionally, doxycycline, the active antibiotic present on both MTAD and
Tetraclean (Table 1), is rather less cytotoxic than other tetracycline
derivates (29).

Although citric acid–containing solutions induced lower NO
concentrations compared with EDTA-based solutions, they still present
a significant proinflammatory effect that could be explained by cell
growth inhibition and cytotoxic response on cell cultures induced by
Tween 80 (MTAD) and Cetrimide (Tetraclean) detergents (30, 31).
It could also be inferred that Smear Clear adds the negative effects of
EDTA and Cetrimide (Table 1) leading to its extreme proinflammatory
effect.

Interestingly, both EDTA and Smear Clear presented similar NO
expression to that of LPS. LPS is the major component of the outer
membrane of gram-negative bacteria. It acts as endotoxin and is re-
garded as one of the most potent osteolytic factors (32), displaying
a positive correlation with apical periodontitis severity (33, 34). The
observation that EDTA-based solutions exhibit similar NO induction
to LPS together with reports of EDTA interference on macrophage
viability and activity (17–19, 35) indicate that care should be taken
to avoid apical extrusion of EDTA-based solutions during root canal
preparation.

Although extensively used in endodontics, there are no reports of
complications after the extrusion of EDTA-based solutions in dental
literature, which might be due to its short-term use in root canal therapy
and the fact that it is generally associated with other solutions such as
sodium hypochlorite. Nevertheless, there are reports on the irritating
potential of EDTA to the connective tissue of rats (36) and induced
inflammatory responses to the periapical tissues of dogs (37). In addi-
tion, deaths were reported after intravenous injections of aqueous solu-
tions of EDTA (0.6%) used for medical purposes in the so-called
chelating therapy (38, 39).

Few studies used NO expression as a marker of drug-induced
inflammation (40–42) but none of them to test irrigants. Considering
that biocompatibility tests should be performed before in vivo experi-
ments, the present experiment would help to add information for initial
evaluation of root canal irrigants.

In conclusion, clinically used endodontic chelators displayed
elevated proinflammatory effects on murine cultured macrophages. Cit-
ric acid–based solutions induced lower NO release than EDTA-based
solutions. LPS- and EDTA-based solutions presented comparable
Endodontic Chelators Induce NO Expression by Murine-cultured Macrophages 827
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macrophage-induced NO expression, and, therefore, care should be
taken to avoid apical extrusion of those solutions during root canal
treatment.
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